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Summary. The recently introduced multiplicative Wiener index � is a molecular structure descriptor

equal to the product of the distances between all pairs of vertices of the underlying molecular graph.

It was expected that � has a different structure dependency than the ordinary Wiener index W which

is equal to the sum of vertex distances. We now show that this is not the case: for a variety of classes

of isomeric alkanes, monocycloalkanes, bicycloalkanes, benzenoid hydrocarbons, and phenylenes a

very good (either linear or slightly curvilinear) correlation between � and W is found. For

homologous series, the relation between � and W happens to be somewhat less simple. For alkanes,

ln� � CW2=3 approaches asymptotically ln W, with C being a constant depending on the particular

homologous series considered.
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Introduction

One of the main directions of research in contemporary chemical graph theory [1]
is the design and application of so-called topological indices ± numerical structure
descriptors that can be calculated from the molecular graph [1±3]. Of the almost
countless topological indices put forward in the chemical literature, only a few
found noteworthy chemical, physio-chemical, and/or pharmacologic applications
(for a review, see Refs. [3±9]. The ®rst such structure descriptor was invented
in 1947 by Harold Wiener [10] and is nowadays called the Wiener index; it is
still extensively used in quantitative structure-property and structure-activity
studies (for some recent applications, see Refs. [11±14]. The Wiener index is
de®ned as

W � W�G� �
X
u<v

d�u; vjG� �1�

where d�u; vjG� denotes the distance of the vertices u and v in the molecular graph
G and the summation embraces all pairs of vertices of G [1, 2]. Recall that if the
vertices u and v are adjacent, d�u; vjG� � 1, whereas otherwise d�u; vjG� > 1.
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Recall also that if n is the number of vertices of the graph G, there are
n
2

ÿ � � 1
2

n�nÿ 1� vertex pairs and, consequently, n
2

ÿ �
summands in Eq. (1).

In a recent work [15] the multiplicative version of the Wiener index was
conceived:

� � ��G� �
Y
u<v

d�u; vjG�: �2�

The mathematical arguments leading to Eq. (2) have been outlined in due detail
in Ref. [15] and will not be repeated here. What deserves to be emphasized is the
following.

In analogy to Eq. (1), the product on the right-hand side of Eq. (2) has n
2

ÿ �
factors. However, unit factors have no effect on the value of this product and may
be disregarded. This, in turn, means that adjacent vertex pairs (which in the case of
W have a non-negligible contribution) have no effect on the value of the �-index. In
other words, in contrast to the Wiener index, the �-index re¯ects only long-distance
structural features of a molecule. In view of this it may be expected that � and W
depend on the structure of the underlying molecule in somewhat different manner.

In Ref. [15] it was shown that, surprisingly, in the case of alkanes there exists a
very good correlation between � and W. The question whether this is also the case
for cyclic molecules required further studies, the results of which are com-
municated in the subsequent action.

Results and Discussion

The �-index of isomeric cyclic molecules and its relation to the Wiener index

In order to envisage the regularities governing the structure dependency of the �-
index of molecules containing cyclic moieties we computed if for several classes of
isomeric molecules (for details, see Table 1). Based on these calculations we
established the following.

Two molecules, possessing different carbon skeletons, usually have different
values for � and W. However, it was found that there exist pairs of (structurally
distinct) alkane isomers whose �-values or W-values or both are equal [15]. We can
now extend these observations:

(a) There exist isomeric monocycloalkanes and bicycloalkanes with equal W- and
�-indices. The smallest such pairs seem to be cyclopentane and 1,1-dimethyl-
cyclopropane (W � 15; � � 32� as well as bicyclo[1.1.1]pentane and spiro-
pentane �W � 14; � � 15�.

(b) There exist isomeric monocycloalkanes and bicycloalkanes with equal Wiener-
but different �-indices. The smallest such pairs seem to be 1,3-dimethylcyclo-
butane �W � 28; � � 2304� and isopropyl-cyclopropane �W � 28; � � 2592�
as well as 1,3-dimethylbicyclo[1.1.1]pentane �W � 38; � � 36864� and
[3.1.1]bicycloheptane �W � 38; � � 41472�.

(c) Curiously, however, among almost one thousand cyclic molecules examined,
we did not ®nd a single pair with equal �-but different W-index. Finding of
such a pair remains a challenge for scholars interested in computer-aided
combinatorical searches. What we can claim already at this stage is that in the
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case of cyclic molecules the isomer discriminating power of the �-index is
superior to that of the Wiener index, a feature which usally is considered as an
advantage [16].

The number of isomeric pairs of type (a) and (b) rapidly increases with
increasing number of carbon atoms.

Within sets of isomeric molecules we have examined the correlation between
ln � and W. Since this correlation is evidently not far from linear (see Fig. 1), we
considered the linear model

ln� � A1 � B1W �3�
and compared it with the simplest possible curvilinear model

ln� � A2 � B2W � C2W2 �4�
By means of an F-test (99% con®dence level) we checked whether the curvilinearity
of the correlation is statistically signi®cant. The results obtained are given in Table 1.
For the sake of completeness we included in Table 1 also the results for alkanes [15].

From the data given in Table 1 we may safely conclude that for all types of
carbon-atom skeletons the ordinary and the multiplicative Wiener indices are highly
correlated quantitites, thus being of nearly equal practical value for applications in
quantitative structure-property and structure-activity studies. Furthermore, the
correlation between ln� and W of cyclic molecules is essentially linear, with a
slight curvilinearity observed in a few cases.

In the ®rst paper by Wiener [10], the topological index W was used to calculate
the boiling points of alkanes. Eventually, numerous other applications of W have
been reported, pertaining to a variety of physio-chemical properties such as molar
volumes, refractive indices, heats of vaporization, chromatographic retention times,
molecular surface areas, and intermolecular forces, to mention just a few. Several
studies in which W was used for predicting pharmacologic activities of different
classes of compounds have appeared in the literature, for instance [11±13]. In

Fig. 1. A characteristic example: correlation between ln� and W in the case of monocycloalkanes

C8H16; for this particular correlation a slight curvilinearity could be established; for details,

see Table 1
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practically all cases, the physico-chemical or pharmacologic properties were
modeled as linear functions of the parameter W. The best results were achieved by
employing models consisting of linear combinations of W and other structure
descriptors [5, 7, 9, 10].

Now, in view of the very good (linear) correlation established between W and
the logarithm of the �-index, it is clear that the �-index could be used in the
precisely same quantitative structure-property and structure-activity studies, with
basically equal success. The above conclusions apply for classes of isomers (in
which the number of carbon atoms is constant). In series of molecules with variable
number of carbon atoms the situation is signi®cantly different. This issue is
considered in the subsequent section.

The �-index of homologous series and its relation to the Wiener index

The ln� and W values of members of homologous series are also correlated, but this
correlation is evidently non-linear. Two important (extremal) examples are depicted
in Fig. 2.

We ®rst focus our attention to normal alkanes CH3(CH2)nÿ2CH3 whose mole-
cular graph [1, 2] is the path graph Pn, see Fig. 3.

Table 1. Sets of hydrocarbons studied and the quality of the models Eq. (3) and (4); numerical values

for the coef®cients A1, B1, A2, B2, C2 in Eqs. (3) and (4), obtained by least-squares ®tting, are available

upon request from �Z. T.; the results for alkanes were previously communicated [15]; mono- and

bicycloalkanes are those examined in Ref. [17]; the catacondensed benzenoid hydrocarbons and

[6]phenylenes are chosen by random among all possible isomers [18, 19]; the F-test is positive (�) if

there is a statistically signi®cant (at 99% con®dence level) increase of accuracy of Eq. (4) relative to

Eq. (3), implying that the correlation between ln� and W is curvilinear; otherwise, the F-test is negative

(ÿ), implying linear correlation

Class of isomers Formula No. of

cycles

Sample

size

Correl. Coeff.

Eq. (3)

Correl. coeff.

Eq. (4)

F-test

Alkanes C5H12 0 3 0.9990 1.0000

Alkanes C6H14 0 5 0.9985 0.9998 ÿ
Alkanes C7H16 0 9 0.9973 0.9992 ÿ
Alkanes C8H18 0 18 0.9967 0.9991 �
Alkanes C9H20 0 35 0.9967 0.9986 �
Alkanes C10H22 0 75 0.9961 0.9983 �
Monocycloalkanes C5H10 1 4 1.0000 1.0000

Monocycloalkanes C6H12 1 13 0.9983 0.9988 ÿ
Monocycloalkanes C7H14 1 31 0.9975 0.9985 ÿ
Monocycloalkanes C8H16 1 73 0.9968 0.9982 �
Bicycloalkanes C5H8 2 5 1.0000 1.0000

Bicycloalkanes C6H10 2 17 0.9984 0.9990 ÿ
Bicycloalkanes C7H12 2 57 0.9979 0.9986 ÿ
Bicycloalkanes C8H14 2 178 0.9968 0.9986 �
Benzenoids C26H16 6 36 0.9937 0.9940 ÿ
Benzenoids C38H22 9 29 0.9984 0.9986 ÿ
Phenylenes C36H16 11 36 0.9987 0.9990 ÿ
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It is well known that

W�Pn� � n� 1

3

� �
� n3 ÿ n

6
�5�

and it has been shown in Ref. [15] that

��Pn� �
Ynÿ1

k�1

k!: �6�

If f1�x� and f2�x� are two functions, and if

lim
x!1

f1�x�
f2�x� � 1;

then we say that for x!1 the functions f1�x� and f2�x� are asymptotically equal
and denote this by f1�x� � f2�x�.

Suppose that the parameter n is suf®ciently large and let us examine the
asymptotic behaviour of W�Pn� and ln��Pn�. From Eq. (5) immediately follows
that W�Pn� � n3=6, i.e.

n � 3
����������������
6W�Pn�

p
: �7�

Fig. 2. The ln�-values of two homologous series (Pn and Rn, see Fig. 3) plotted versus the respective

W-values; upper curve: Rn, lower curve: Pn; the curves of all other homologous series of alkanes fall

between these two extremes

Fig. 3. The molecular graphs of the normal alkanes (Pn) and of a class of highly branched alkanes

(Rn); these graphs have n and 3n ± 4 vertices, respectively
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For the asymptotic behavior of the �-index, from Eq. (6) we get

ln��Pn� �
Xnÿ1

k�1

ln k! �
Xnÿ1

k�1

�k ln k ÿ k� �
Xn

k�1

�k ln k ÿ k�

�
�n

1

�x ln xÿ x�dx � 1

2
x2 ln xÿ 3

4
x2

����n
1

� 1

2
n2 ln nÿ 3

4
n2

which ®nally results in

ln��Pn� � 1

2
n2ln n: �8�

Substituting Eq. (7) back into Eq. (8) we arrive at

ln��Pn� � 1
3
���
6
p W�Pn�2=3

lnW�Pn� �9�

which reproduces the lower curve in Fig. 2 for large values of n. Recall that
1=3

���
6
p � 0:55032.
The molecular graph Rn (see Fig. 3) corresponds to the highly branched alkanes

CH3(C(CH3)2)nÿ2CH3. The analysis of their �-indices is much simpli®ed by the
identity

��Rn� � 2ÿ3�nÿ2� ��Pn�� �9
which combined with Eq. (9) readily yields

ln��Rn� � 9

2
n2 ln n: �10�

Since, in addition [20],

W�Rn� � 3

2
n3 ÿ 27

2
n� 16 � 3

2
n3;

we obtain

n � 3
���������������������
2W�Rn�=3

p
: �11�

From Eqs. (10) and (11) we obtain

ln��Rn� � 3
��������������������������
3=2W�Rn�2=3

q
ln W�Rn� �12�

which reproduces the upper curve in Fig. 2 for large values of n. Recall that
3
��������
3=2

p � 1:14471.
Both Eq. (9) and (12) have the same mathematical form (Eq. 13)) and differ

only in the value of the constant C. Because Pn and Rn are two extremal cases a
completely unbranched and a maximally branched system, we conclude that Eq.
(13) holds for other homologous series as well (at least for alkanes, but most
probably also for systems containing cyclic elements).

ln� � CW2=3lnW �13�
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